Some Small-Centralizer Properties for Rings
نویسندگان
چکیده
We characterize rings R in which certain elements x have the property that CR(x) (resp. the set of zero divisors in CR(x)) is finite. We also explore the consequences of an assumption that certain x satisfy CR(x) = 〈x〉.
منابع مشابه
On centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملOn Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کاملSome Properties of Character Products
In practice the hypothesis that x(uv) # ~(u’v) for some conjugate U’ of u is almost always satisfied. When x is faithful and u = v-r, then this just asserts that u does not belong to the center of G (though it is an easy exercise to give a direct proof of the theorem in this case). We shall derive Theorem 1 from a general result (Theorem 2) about common constituents of permutation characters. T...
متن کاملOn generalizations of semiperfect and perfect rings
We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel, that is, every simple right $R$-module has a flat $B$-cover. We give some properties of such rings along with examples. We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...
متن کاملA Note on Jordan Left ∗-Centralizers in Rings with Involution
Let R be a ring with involution. An additive mapping T : R → R is called a left ∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗) holds for all x, y ∈ R, and a reverse left ∗-centralizer if T (xy) = T (y)x∗ holds for all x, y ∈ R. The purpose of this paper is to solve some functional equations involving Jordan left ∗-centralizers on some appropriate su...
متن کامل